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Abstract: 

Motivation: The richness of a microbial community is an important parameter to compare its structure with 

those of other communities across time and environments. The estimation of richness based on marker gene 

data obtained through Next Generation Sequencing faces several statistical problems. The current 

estimators, which are mostly derived for the analysis of macro-organisms, tend to grossly underestimate the 

richness of microbial communities. We developed a stochastic process to understand the effect of the 

structure of the population on the traditional richness estimators and introduce a new measure, the 

Algorithm for Quantifying Species (AQS) 
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Results: The AQS is a non-parametric estimator based on simulation that in our tests outperformed the 

traditional richness estimators, especially in the case of samples that are a very small fraction of the 

population and a large number of rare species, which is the frequent situation in metagenomics. 

 

Resumen: 

Motivación. La riqueza de una comunidad microbiana es un importante parámetro para comparar su 

estructura con otras comunidades a través del  tiempo y  el entorno. La estimación de la riqueza basada en 

datos de un gen marcador obtenidos por Secuenciación de Nueva Generación presenta diversos problemas 

estadísticos. Los estimadores habituales, derivados del análisis de macro-organismos, tienden a subestimar 

la riqueza de comunidades microbianas. Desarrollamos aquí un proceso estocástico para entender los 

efectos de la estructura de la población sobre las estimaciones tradicionales de riqueza e introducimos el 

Algoritmo de Recuento de Especies (AQS). 

Resultados. AQS es un estimador no paramétrico basado en la simulación que en los test realizados mejora 

la estimación tradicional de la riqueza, especialmente en muestras que son muy pequeñas fracciones de la 

población y que contienen un gran número de especies raras, lo que es una situación frecuente en 

metagenómica. 

 

Palabras Clave: Estimación, Riqueza, ADN, Comunidad 

 

Key Words: Estimation, Richness, DNA, Community  

 

 



 

ISSN: 2525-1333. Vol.:2-Nro.1 (Agosto-2017) 

 http://reddi.unlam.edu.ar Pág: 3 

 

 

I. INTRODUCTION 

The quantification of the biodiversity in microbial 

communities is a complex task since, in addition to the 

statistical problems that arise similar to those found in 

the inference of richness or diversity in other kind of 

populations (Magurran, 2011), biases also emerge due 

to the process of metagenomic DNA, from which 

different individuals are identified, (Schloss, 2010; 

Youssef and Elshahed,  2008; Huse et al., 2010). This 

work is limited to explore an exper-imental 

methodology to treat the statistical inference of the 

popula-tion richness, and it supposes solved or at least 

mitigated by appro-priate precautions, the effects of 

the sequencing, alignment, filtering and any other 

process of DNA obtained from a community sample. 

The technique used for microbial richness 

measurements requires a marker gene, highly 

conserved through evolution (Schloss-Handelsman 

2006).  Thus, when the sequences belonging to indi-

viduals of the same sample reveal a certain percentage 

of variations between them, such variations can be 

attributed to the difference in species and, in general, 

in taxa, and not simply to random occurrences. 

The sample once transformed into a set of marker 

gene sequences, it can be inferred through it, the 

richness of the community and perhaps also its 

distribution. This is where a significant statistical 

problem appears, since usually the sample size is 

insufficient for the task and, in the facts the richness is 

underestimated (Hughes et al., 2001). This is due to 

the presence of a significant proportion of rare species 

or taxa, in statistical terms, making it very unlikely to 

find in the sample individuals belonging to all or 

nearly all of them. Individuals of rare species are very 

few in relation to individuals of abundant species in 

the community and also rare species occur in greater 

numbers than the abundant species, so the sample size 

should be very large to infer a reasonably approximate 

value of the richness. In other words, the rarity and 

distribution of species seriously complicate the 

estimation of the population richness (Roesch, L. et al. 

2007). This problem has been attempted to address by 

building parametric estimators as CHAO (Chao 1984) 

and ACE (Chao-Lee 1992) that even though they have 

improved the estimations they have not solved the 

inference, at least when it comes to microbial 

populations. 

One line of current work (Haegeman et al., 2013) 

considers that the appropriate biodiversity assessment 

requires the analysis of a set of Hill indices that 

represent richness, entropy, etc. (Hill 1973) ( O´Hara, 

R. 2005). This perspective is expanded with the devel-

opment of extrapolating rarefaction curves to assess 

the richness (Chao et al. 2014). The present work 

proposes an alternative pro-cedure to those mentioned 

by building a random process that is increasing the 

sample size in a simulated form, by using an estima-

tion of the probability that, given a sample of size n, 

an upcoming individual who is added to the sample 

corresponds to a new species. This estimation was 

reported by Alan Turing in 1941 (Good 1953), (Nadas 

1985). 

Thus the Algorithm for Quantifying Species (AQS) 

designed updates the number of individuals and 

species in each iteration and grows the number of 

species simultaneously with the decrease to zero of the 

probability of finding a new species. Although the 

resulting distribution statistically may not correspond 
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with the actual of the population, tests from samples 

of simulated and real populations allow seeing that, 

with a previous processing of the sequences to 

mitigate any bias, richness is better appreciated. This 

method of experimental modeling of the community 

can be com-putationally feasible and reasonable by 

optimizing execution times and with processing 

capabilities in parallel. 

 

II. MATERIALS AND METHODS 

1- In metagenomics, properties of a community are 

analyzed from the genomes of the individuals who 

composed it. In particular, given a microbial 

community, it is possible to sample and process the 

DNA to obtain sequences of the chosen marker gene 

that, in the present work, is the 16S rRNA 

(Armougom and Raoult 2009). Each sequence of this 

gene then corresponds to a distinct individual that 

integrates the sample and it is possible to gather 

sequences according to proximity criteria evaluated by 

the model of genetic distance of Jukes-Cantor or 

another similar (Hillis et al. 1996). Then, a threshold 

of dissimilarity between sequences can be taken, from 

which they will be considered as different species (or 

generally taxa). So different clusters are created that 

represent each one a species (or taxon) composed of 

individuals within the sample and are similar 

according to the threshold chosen (Schloss-

Handelsman 2005). The n original sequences of the 

sample are distributed in clusters called Operational 

Taxonomic Units (OTU) and thus it can be built the 

distribution of sample abundance that indicates how 

many clusters contain r individuals, being 

nr ,...3,2,1  (Hill et al. 2003).  

To randomly select n individuals in a community that 

contains a finite and unknown number of species S, 

quantities kr nnnn ,...,,...,, 21  are, in each case, the 

number of species that records r individuals among the 

n selected. So 



k

r

r nrn
1

. 

Clearly,   represents the number of species not 

represented by any of the n chosen individuals and the 

number of species in the community is                   . If 

the number of species recorded by taking n individuals 

is called       , then                       (Chao and Shen. 

2003). It is important to note that when adding a new 

individual to a sample, it may belong to an already 

present species or a new still unaccounted for. 

2- The method of rarefaction curves allows estimating 

the richness of a medium although it is generally 

applied to compare richness between two or more 

communities, because it relieves the problems arising 

from inadequate and usually unequal samples size 

(Hughes-Hellmann 2005) (Gotelli and Colwell. 2001). 

The basic idea of the rarefaction by individuals when 

trying to estimate the richness is that from taking 

larger samples is possible to capture an increasing 

number of different species. Given a community with 

an unknown number of individuals and a number S of 

different species also unknown, you can take samples 

of size n and determine nS , which is the number of 

different species found in the sample. At each 

rearrangement that is carried out in the sample by 

examining each individual, the number of detected 

species will grow cumulatively according to the dotted 

curve in Figure 1. Once recorded i of the n individuals 

in each reordering, the expected theoretical value of 

)( iSE  is approximated by the average of the iS  

0n





k

r

rnS
0

nS 0nSSn 
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Fig.  2.  Random Process of the Quantity of Species.  

obtained for each of them. The curve formed by the 

points ))(,( iSEi , which is drawn in a continuous line 

in Figure 1, is called of rarefaction and can be used to 

estimate the S richness of the medium. 

 

Fig.  1.  The line of points is any Accumulation Curve. The 

complete line is a Rarefaction Curve. 

 

The rarefaction curve represents the average of all 

accumulation curves built for different resamplings. 

When the number i=n of examined individuals is 

reached, any accumulation curve will have reached the 

number nS  of species present in the sample size and 

therefore nn SSE )( . 

If n also results large enough, the rarefaction curve 

would tend asymptotically to the value of the richness 

population S. That is; to determine the horizontal 

asymptote of a rarefaction curve the sample size 

should be increased until )( nSE  observes a steady 

behavior as n grows and in such circumstance the 

amount nn SSE )( approximates the population 

richness S. 

3- An experimental model is built through a random 

process defined as follows: 

Definition 1: Given a sample of size n, being, for each 

i with ,...3,2,1i , the random variable iS that takes 

the values 1 ii SS  and 11  ii SS  with the 

respective probabilities ip1  and ip  being also 

nSS 0 . The succession of random variables 

,...,, 321 SSS  is hereinafter referred as Random 

Process of the Quantity of Species (Figure 2). 

The interpretation of the experimental model identifies 

iS  as the number of different species present in a 

sample of size n+i. In addition, ip  is interpreted as 

the probability of that by incorporating a new 

individual to a sample of size n+ 1i , this one 

corresponds to a new species not present so far in the 

sample. It has been proved (Good 1953) that the 

probability that, once chosen n individuals, by 

selecting a new one it  results to be from a species so 

far unaccounted for, this can be approximated by the 

quotient 
n

n
T 1 where 1n  is the number of species 

that appears once in the chosen sample and it must be 

assumed strictly greater than 0. 

This idea, provided by Turing, is used here to estimate

ip . Then, the proposed formula for calculating the 

probability of a new species associated with the 

random process of the quantity of species is 

1




in

sgletonsn
Ti  (Table 1). The number of singletons 
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Fig.  3.  Decreased Probability of New Species 

in each sample of size 1 in refers to the clusters 

formed by a single individual, when the sequences 

grouping process and the subsequent identification of 

each cluster with a different species are performed. 

 

TABLE  1. 

STATE PROBABILITY 

Thus the expected value of Si that would correspond 

to the rarefaction curve when i simulated individuals 

have been added to the sample is: 

iiiii TSTSSE )1()1()( 1.1    and operating 

iii TSSE  1)(   is obtained.  

Figure 3 shows how the probability of new species 

tends to zero, 0iT , as it grows the number of 

individuals incorporated to the sample by the 

simulation according to the experimental model. As 

the desired number of species S is finite (Good 1953), 

the rarefaction curve )( iSE  should be reaching an 

asymptote that estimates it. 

 

 

The value of T in each iteration must be considered to 

be an estimation of the probability of a new species 

and not exactly this probability. Therefore, the 

expected value )( iSE  will be only an approximate 

estimation of S. Thus the built model will be 

appropriate if the computational experience shows a 

good performance in the evaluation of S. In the 

practice, with the idea of reducing the variance, the 

same calculation from the same sample can be 

realized several times and it might average the 

quantities estimated. 

4- The Algorithm for Quantifying Species (AQS) is 

based on the Random Process of the Quantity of 

Species defined above. This algorithm performs the 

simulation by the Monte Carlo technique. Given the 

n  size of the original sample, the value of the 

probability of new species estimator is determined. 

This value allows constituting the  nT,0  and  1,nT  

intervals so that when choosing a random number r  

such that 10  r , if it falls within the first interval 

the new simulated individual belongs to a new 

species, and if it falls within the second interval it is a 

specimen of a known species. If the former occurs, the 

number of species in the medium is increased in 1 and 

if not, the existing proportions of each species are 

used to assign, by a new random number, the already 

known species to which the new individual belongs. 

Thus individuals are added until the account of the 

new species reaches a stable value or until it meets 

another cutting criterion of the simulation. The 

procedural steps are synthesized in a sequenced form 

below. 

State State Probability 

Si=Si-1 
ii Tp 1  

Si=Si-1+1 
ii Tp   



 

ISSN: 2525-1333. Vol.:2-Nro.1 (Agosto-2017) 

 http://reddi.unlam.edu.ar Pág: 7 

 

i- Given the chosen sample of size n, and its 

grouping in OTUs, the initial value of  the 

Turing estimator 
i

f
Ti

1
1   is determined, 

being ni   and 
1f  the current number of 

singletons. 

ii- A random number r  is chosen, such that 

10  r , asking if it is in the  1,0 iT  

interval. If so, 11  ii SS  is performed 

and goes to step iv. If the opposite 

happens, ii SS 1  is performed and goes 

to step iii. 

iii- The distribution of the sample abundance 

is used to calculate the proportion of 

individuals in OTUs of n,...2,1  

individuals and with these proportions it 

can be determined, by drawing lots 

according to them, to what group of 

already known OTUs the new simulated 

individual belongs. To establish to which 

specific OTU, among this group, belongs 

the new individual, a new drawing lot is 

performed with uniform probability for 

each OTU of the group. 

iv- Let the new individual be or not of a new 

species, the sample now has one more 

element. It can be asked then whether the 

procedure should be cut because the 

chosen criterion is met, in which case the 

simulation would be complete. If the 

cutoff criterion is not met, then 1 ii  

is assigned, the new distribution of 

abundance and the new estimate of Turing 

according to 
i

f
Ti

1
1   are calculated and 

it repeats from step ii. 

The corresponding computer program was developed 

in R language and presented as Annex. 

5- It is not possible to have sequences of 16S rRNA 

gene corresponding to all individuals of a real 

microbial community because, besides technological 

or economic constraints, the test would be destructive 

of the community itself. Therefore, to test the AQS 

procedure on an entire population, it can simulate it or 

work with a sample for which the rarefaction curve 

reaches the asymptote that estimates the quantity of 

species. In both cases it can then give by known the 

actual number of species and compare with the 

estimate obtained by applying the AQS procedure. 

This also allows comparing the performance of AQS 

with other forms of estimation. 

With that idea a simulated community was built using 

the log series x ,
2

2x
,

3

3x
,…,

m

x m
, which models 

the expected amount of species that are represented by 

1, 2, ..., m individuals in the population. If N is the 

population size and S the number of species contained 

in it, the relations    )1ln(/1 xxx
N

S
  and 

x

xN )1( 
  are met (Fischer et al. 1943). 

According to this, values for S and N can be calculated 

from α and x amounts of ecological significance. 

Then, the values α = 5000 and x = 0.995 were used 

(Magurran 2004) to obtain a community composed by 

898341 individuals distributed among 26332 species. 

On the other hand, to work also on real data, the water 

sample of deep sea FS396.archaea was considered 
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(Haegeman et al. 2013)  (Huber et al. 2007), this 

sample is composed of 16316 sequences of 16S rRNA 

and its rarefaction curve reaches an asymptotic 

behavior at that size. The number of species present in 

this sample, which for this experience it was 

considered as a whole community, is 346.  

In both cases, the observed number of species was 

compared with the estimations obtained by the non-

parametric statistics CHAO and ACE and these in turn 

with the estimations performed by AQS. For the 

sample obtained from the simulated population the 

development of the estimation was studied while the 

amount of simulated individuals increased and the 

Turing estimator value decreased. For the 

FS396.archaea sample five subsamples of six different 

sizes were taken and with each one of them 10 runs of 

the algorithm were performed in order to estimate the 

expected value )( iSE  which in turn estimates S. To 

the comparison of performance the evaluation of the 

extrapolation was added by means of 



































































10

1
0

10

1
0 ˆ

exp1ˆ
ˆ

11ˆˆ

ffn

mf
fS

ffn

f
fSS n

m

nmn  

(Chao et al. 2014). 

Here, nS  is the richness of the sample of initial size n 

which is calculated from the same, 1f  is the number 

of singletons in the sample of size n and 0f̂  is an 

estimation of the number of species not observed in 

the sample of size n. The ACE estimation was taken as 

0f̂ value that actually is designed as an estimator of 

the total species in the community and not as an 

estimator of the missing species in the sample. Thus 

this last amount may even be overvalued. The m value 

is the number of individuals that are ideally added to 

extrapolate. In the case where m become very large (

m ), 0
ˆˆ fSS nmn   will result, so such value 

could be taken as an upper bound of the extrapolation 

that, at first, it also will be considered in the analysis. 

Finally an evaluation of the respective coefficients of 

variation was performed. 

 

III. RESULTS 

For the simulated population built with the Fischer 

distribution of parameters α=5000 and x=0.995, the 

experimental test consisted of applying the AQS on an 

initial sample of 1000 individuals performing different 

numbers of iterations. In each run the value that 

reached the probability of a new species iT  was also 

obtained by cutting the simulation. Table 2 shows the 

results. 

TABLE  2. 

AQS ESTIMATION OF THE COMMUNITY RICHNESS 

DEPENDING ON QUANTITY ITERATIONS 

 

Based on the same sample of 1000 simulated 

individuals the performance of non-parametric 

estimators CHAO and ACE was compared with the 

AQS estimations obtained for increasing amounts of 

iterations. In turn, all of these results were compared 

with the actual number of species. Table 3 evidences 

the improvements that AQS produces in the 

estimation of richness regarding CHAO and ACE as 

Iterations 60000 200000 500000 897541 

Species 14615   19271   24559   25327 

Probability of 

new species 

 0.091    0.026    0.011    0.005 
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the number of iterations increases. The series obtained 

searches an asymptotic value that not overtake S. 

By using the set FS396.archaea to test the 

performance of AQS the estimation based on five 

samples of 160 individuals representing 

approximately 1% out of 16316 individuals within the 

community, is former studied. In each case, 10 runs of 

the algorithm were performed by comparing the AQS 

average estimations with the CHAO and ACE 

estimations, with the extrapolation and its bound, and 

the real value of the richness 346S . Figure 4 shows 

these results. 

Then, five samples of each of the sizes 320, 640, 960, 

1280 and 1600 were taken. On each sample 10 runs of 

the algorithm were performed establishing as 

estimation the average of the estimations for each run. 

The intention was to compare the estimations ACE 

and AQS with the actual known richness. Figure 5 

shows the results obtained in each run for each sample 

and sample size. 

 

Fig.  4.  Richness Estimation (sample size 160). The thick gray 

line is the real richness. The black circles are the AQS estimations, 

the triangles are the CHAO estimations and the invert triangles are 

the ACE estimations. 

 

TABLE  3. 

RICHNESS ESTIMATION COMPARATIVE PERFORMANCE 
 

Reachness Real CHAO ACE AQS/ 

45000 

AQS/ 

60000 

AQS/ 

200000 

AQS/ 

500000 

N° of 

species 

26332 6699 6751 12821 14615 19271 24559 

%  100 25 26 49 56 73 93 

 

TABLE  4. 

AQS VS. ACE COMPARISON AS PERCENT OF REAL 

RICHNESS BY RELATIVE SIZE SAMPLE 
Sample Size  Real 

Richness 

AQS (%) ACE (%) 

1% 100 44 16 

2% 100 45 36 

4% 100 64 47 

6% 100 69 43 

8% 100 78 71 

10% 100 91 74 

 

TABLE  5. 

AQS ESTIMATION PERCENTAGE IMPROVEMENT 

Sample Size (%)  1  2  4  6 8 10 

AQS Improvement 

(%) 

28 21 33 32 7 17 
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Fig.  5.  Comparison between AQS and ACE estimations. The 

horizontal gray line is the real richness. The complete line is the 

AQS estimation and the dashed line is the ACE estimation. The 

number in the upper right corners is the sample size.  

Although, in ecological practice, one community 

sample can be chosen for each sample size, each of 

the estimators was averaged in order to compare them 

in statistics terms. Thus, Figure 6 shows that the 

increase in sample size produces, as expected, a better 

average performance of all of them. Particularly, when 

the results are observed in percentage of richness 

obtained by AQS and ACE according to the 

percentage sample size with reference to the 

population, AQS shows one improvement in the 

estimation as shown in Table 4. Differences in 

percentage estimations in favor of AQS over 100% of 

the richness are, for the present case, those of Table 5. 

Even for very large percentage-wise sample sizes, it is 

noted that the AQS estimation produces an 

improvement over the non-parametric statistical ACE. 

A study of the variability was additionally carried out 

by measuring the coefficient of variation to establish 

the stability of each one of the estimators obtained 

from the five samples of each sample size. As an AQS 

estimation the average obtained based on the 10 runs 

performed for each sample was taken. CHAO, ACE, 

Extrapolation and Bound Extrapolation values from 

each sample were considered and, as observed values, 

the amounts of species obtained in each one of the five 

samples for each size were taken. These latter values 

will show then the variability of the sample richness. 

Figure 7 shows these results. A detailed analysis of the 

results was performed in the following section. 

 

 

Fig.  6.  Richness average estimation by size.  The thick gray line 

is the real richness. The black circles are the AQS estimations, the 

triangles are the CHAO estimations and the invert triangles are the 

ACE estimations. The symbols x and + are the extrapolation ACE 

estimation and the bound extrapolation ACE estimation 

respectively. 

 

 

IV. DISCUSSION 

 

Using Fischer distribution to build a simulated 

population is based on the observation, particularly in 
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certain marine biospheres, of statistically rare 

phylotypes that fit in this distribution  (Galand et al. 

2009). The simulation of the population based on such 

distribution requires to choose  and x  parameters 

that intervene in the calculation. The maximum 

number of individuals appearing in at least one cluster 

grows as the population size grows and potentially if 

an infinite population is assumed, it could be accepted 

that m . In this case the amount of species is 

)1ln(
1

xx
k

S
k

k 







 and the total number of 

individuals is
x

x

k

x
kN

k

k






 11


. To deduce both 

formulas it has been taken into account that 10  x  

(Fischer et al. 1943). Furthermore, the amount  is an 

intrinsic parameter of the richness of each population 

and can be used as an index of diversity (Magurran 

2004). If values for the number of species S and N 

population size are established in advance, the value 

of x  can be determined solving, by iterative methods, 

the equation    )1ln(/1 xxx
N

S
  that 

expresses the ratio between the number of species and 

the population size. The parameter x  then depends on 

this reason and in the practice 9.0x is met without, 

of course, it can exceed the value 1 (Magurran 2004). 

 

 

 

 

 

 

 

 

 

Fig.  7.  Comparison of coefficients of variation. The thick gray 

line is the real richness. The black circles are the AQS estimations, 

the triangles are the CHAO estimations and the invert triangles are 

the ACE estimations. The symbols x and + are the extrapolation 

ACE estimation and the bound extrapolation ACE estimation 

respectively.  

Table 6 gives the values of the ratio 
N

S
 calculated 

with different values of x  assuming that the 

population size is 1000000N . Thence, is possible 

to obtain the number of species S and with it, the value 

of the α parameter that can be calculated from N  and 

x  according to 
x

xN )1( 
 . In all cases it is shown 

that S  . As x  is the first term of the log series, 

if x  is close to 1, results approximately the expected 

number of species that appear once in the population, 

that is the minimum amount of species that can be 

considered rare. Also, when the ratio 
N

S
 between the 

number of species and the population size decreases, 

as in some sense it expresses richness,  also does it. 

In the practice the richness index  can only be 

calculated from samples and in that case its value can 
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be considered independent of the sample size when it 

has more than 1000 individuals. (Magurran 2004).  

If an initial approximation of richness between 5000 

and 30000 species is considered for a population of 1 

million individuals, the corresponding values x and α 

should range between 999.0995.0  x  and 

50001000   respectively. For the chosen parameters 

α = 5000 and x = 0.995, the value 

4975995.05000 x  represents approximately the 

number of species of greatest rarity of the community. 

 

TABLE  6. 

RELATION BETWEEN x AND α PARAMETERS WITH SIZE 

AND RICHNESS COMMUNITY 
 

X S/N S α 

0.9 0.2558 ≈ 1/4 255817 111111.11 

0.95 0.1577 ≈ 1/6 157700 52631.58 

0.975 0.0946 ≈ 1/11 94600 25641.03 

0.99 0.0465 ≈ 1/22 46500 10101.01 

0.995 0.0266 ≈ 1/38 26600 5025.13 

0.9975 0.0150 ≈ 1/67 15000 2506.27 

0.999 0.0069 ≈ 1/145 6900 1001 

 

These species represent 19% of the total. In turn, 

according to the simulated distribution, there would be 

10% of species represented by two individuals, 6% 

with three individuals in the population and so on. In 

short; a significant proportion of rare species in the 

community is present. 

When a sample of 1000 individuals out of a total 

community of 897,541 was selected, the results 

dumped in Table 2 allowed checking the growing 

effectiveness of the AQS estimation while the number 

of individuals added in a simulated way to the sample 

increased. Also here, the decrease to 0 of the Turing 

estimation of a new species could be seen. Table 3 

shows the proportion of the real richness detected as 

the number of iterations increases. Upon reaching the 

500000, the estimated percentage of the richness by 

AQS is 93%, which is a qualitatively different 

performance than the one provided by ACE (26%) and 

CHAO (25%) from the same sample. 

To select the F396.archaea sample and use it as a test 

population its relatively large size was considered and 

the asymptotic form which, considered all individuals, 

presents its rarefaction curve (Haegeman et al. 2013). 

By selecting five samples out of 160 individuals the 

AQS estimation was higher than that obtained as a 

bound of extrapolation and almost double the 

estimates made by ACE, CHAO and its own 

extrapolation when a number of ideal individuals who 

tripled the sample size were added. nm 3  is the 

maximum recommended value by adopting a 

statistical point of view to perform the extrapolation  

(Chao et al. 2014). However, the experience also 

allowed confirming that the best estimation provided 

by AQS barely reached half of the real richness. In 

this sense, each estimation was averaged considering 

the five samples to obtain a graph that illustrates the 

percentage of the estimated real richness per 

statistical. Table 7 shows marked differences between 

the average estimations and the actual value. The 

increase in sample size allowed reducing these 

differences. Figure 5 shows that for samples of 1600 

individuals, about 10% of the population size, cases of 

very precise estimation and even overestimation 

occurred. In general terms, Figure 6 and table 4 

confirm the improved performance of AQS compared 

to the non-parametric estimator ACE. An 
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extrapolation behavior with nm 3  similar to that of 

CHAO is also observed producing both 

underestimation of the richness. 

TABLE  7. 

ESTIMATED RICHNESS AS PERCENT OF REAL RICHNESS. 

 
 Estimated Richness (%) 

Real Richness 100 

AQS   44 

Extrapolation Bound   24 

ACE Extrapolation    17 

ACE   16 

CHAO   14 

 

The extrapolation bound is closer to the values 

obtained by AQS, especially when the sample size 

grows. However, for the smaller sample size AQS 

provides a better estimation. As expected, in addition, 

a more precise estimation occurs when the size of the 

original sample increases. 

In spite of the analysis performed, the results always 

evidence the differences in the precision of the 

estimation obtained in the simulated case by the 

Fischer distribution and the real case analyzed, 

suggesting the study of other measures to account for 

the community diversity, especially in the case in 

which the analyses should be performed from a single 

sample. 

Figure 7 analyzes the variability of different 

estimations. First, it should be pointed out the inherent 

variability of sampling. This can be appreciated by 

varying the amount of different species that appear in 

different samples. These are represented by a gray line 

and exhibit the lowest relative variation for all sample 

sizes. According to this, the increase of the relative 

variation for each type of estimation will be linked to 

the second source of variability that is the inherent to 

the method used to establish it. Non-parametric 

estimations reveal percentages of variation between 

6% and 33% for CHAO and between 17% and 45% 

for ACE, with respective variation ranges of 27% and 

28%. AQS reveals lower rates, between 8% and 25%, 

and in turn lower range of variation of the same, 17%. 

Thus the AQS estimation better appreciates the 

richness and with less variability. 

V. CONCLUSIONS 

 An alternative approach has been presented 

based on an experimental model that "fits" the 

enlargement process of the sample needed to 

better accurate the richness estimation. Such 

approach, related to the data mining, uses an 

initial subset to predict a parameter value of 

the community. 

 The results have significantly improved the 

estimations of richness carried out based on 

models and assumptions of analytical and 

statistical type. 

 Anyway, is once again clear the need to assess 

the biodiversity through various measures 

supplementing the knowledge of the 

community, while providing a more reliable 

assessment of their properties. 

 Given the best, though still insufficient, 

performance achieved in the richness 

estimation according to the alternative 

approach proposed, its application to other 

measures that quantify the amount of 

information and the distribution of species in 

the community is suggested. 
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