

 ISSN: 2525-1333

 Vol.: 7 - Nro. 1 (AGOSTO 2022)

 http://reddi.unlam.edu.ar Pág: 1

Artículo original

Penalidades en lecturas no alineadas dentro de

Microcontroladores RISC-V

Misaligned memory loads penalties in RISC-V

Microcontrollers

Edgardo Gho

 Universidad Nacional de La Matanza

Grupo de investigación en lógica programable

egho@unlam.edu.ar

 Universidad Abierta Interamericana

EdgardoAlberto.Gho@alumnos.uai.edu.ar

Resumen:

La arquitectura RISC-V fue concebida con el fin de evitar los problemas de sobrecarga de instrucciones de

las arquitecturas x86 y ARM. Su definición es abierta dejando librado los detalles de la microarquitectura al

diseñador del procesador. Las implementaciones de microcontroladores RISC-V se comportan de manera

distinta en cuanto a los accesos a datos de forma no alineada. Si bien los compiladores buscan evitar este tipo

de accesos, determinadas estructuras de datos requieren los mismos en ámbitos donde la memoria es limitada.

En este artículo se estudia la implementación de tres microarquitecturas RISC-V en cuanto a los accesos a

 ISSN: 2525-1333

 Vol.: 7 - Nro. 1 (AGOSTO 2022)

 http://reddi.unlam.edu.ar Pág: 2

memoria no alineados y se plantea un código que permite salvar la ejecución de programas que realizan

accesos no alineados cuando la microarquitectura no tiene soporte para los mismos. En los casos donde la

microarquitectura soporta accesos no alineados se estudia el impacto en la eficiencia de ejecución de

instrucciones.

Abstract:

The RISC-V instruction set architecture is designed to overcome current problems of bloated instruction sets

present in other architectures like x86 and ARM. The ISA does not restrict micro architecture

implementations leaving those details free to the chip designer. RISC-V microcontrollers can then provide

support for misaligned memory loads or depend on software emulation. Compilers will try to prevent these

types of memory accesses nevertheless some data structures require them mostly on memory constraint

systems. This article studies three different RISC-V microarchitecture implementations related to misaligned

accesses and provides code to perform software emulation when the microarchitecture does not support them.

Instruction execution penalties are studied comparing them to aligned memory accesses.

Palabras Clave: Arquitectura de computadoras, RISC-V, estructura de datos

Key Words: Computer architecture, RISC-V, data structures

Colaboradores: Carlos Maidana, Jair Hnatiuk

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 3

I. INTRODUCTION

A computer is composed of three main components, being

the Central Processing Unit (CPU), Memory Unit and

Input/Output(I/O). Memory content is defined by the user

depending on the application. Programs designed to be

executed by the CPU need to be stored in memory for the

CPU to access and execute. This is done by storing the

program instructions on a memory section, which the CPU

accesses sequentially during the execution of the program.

Program data, usually referred to as variables, are also

stored in memory and accessed by the CPU in the same

manner. Computer architecture defines a data unit named

word which represents the size of a single unit of

information. The unit size is usually tailored to the

application. Most modern computer architectures [1] have

word sizes larger than one byte, being 4 bytes (32 bits) and

8 bytes (64 bits) the more common. Some computer

architectures, in particular Harvard-based ones, define

different memory ranges to differentiate between program

instructions and program data. These ranges need to be

known in order to properly use the computer. This

information is usually represented on a memory map

which lists the ranges where a program instructions and

data can be stored. The memory addressing is part of the

computer architecture and virtually all computer

architectures [2] use byte addressing. In essence, byte

addressing allows the user to reference a single byte inside

a word. Nevertheless, memories are organized as block

arrays and are meant to be accessed one block at a time.

The block size is related to cache memory line size [3], in

particular L1. So even though CPUs support byte

addressing, the program information (being instruction or

data) is usually word aligned, so much so that some CPU

architectures enforce a restriction preventing memory

accesses that cross the word boundary. These types of

accesses are usually referred to as unaligned or misaligned

accesses.

In [3] the authors study the impact of different unaligned

memory accesses on different x64 ISA (instruction set

architecture) instructions. Depending on the boundary

crossed the time penalty can be up to 1800%.

The RISC-V is an open standard instruction set

architecture that is not bound to a particular

implementation [4]. This means that while the computer

architecture is standardized and clearly defined,

manufacturers have no restrictions on how to implement

the ISA. While this gives an enormous amount of freedom

to the designer it can create fragmentation among different

implementations of the same ISA [5]. Being an open

architecture RISC-V allows microarchitecture changes to

improve security while maintaining the base instruction

set compatibility.

This paper studies the microarchitecture differences

within memory access alignment in three different RISC-

V CPUs. Although the three CPUs implement the same

basic RV32I instruction set as a minimum, some

implement a more complete RV32IMAC set including

integer multiplication/division, atomic access and

compressed instructions. The focus of the paper is

comparing how the three handle misaligned load access to

data memory. As a result, we propose a simple code to

handle misaligned loads for word size data, both in RV32I

and RV32IMAC sets. A benchmark is performed to

measure the execution time penalty.

It is important to highlight that most compilers will try to

prevent misaligned access to memory. One known case is

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 4

the GCC [6] compiler which adds padding to data

structures in order to keep load access to the data structure

element aligned. Even though this will prevent misaligned

access, the padding added to the data structure consumes

memory. On CPU implementations designed for

embedded systems and not general purpose computers

memory is usually constrained and using padding in data

structures will waste this resource.

II. BACKGROUND

A. RISC-V

The base RISC-V ISA [7] is a fixed 32 bit instruction

length. However, it is designed to be extended to a

variable length set using 16 bits parcels. Therefore,

instruction alignment needs to be naturally aligned to the

16 bit parcel size. If the implementation is restricted to the

basic RV32I set, then a 32 bit natural alignment is needed

for instructions, although it is very common to find

RV32IC which supports compressed instructions

changing the requirement to a 16 bit natural alignment. In

fact, the macro-op fusion benefits [8] from using the

compressed instructions to achieve better performance

than other ISAs like x86 or ARM.

Data access on the other hand is byte addressed and there

are no restrictions by the ISA in terms of alignment. The

authors describe that for best performance data access

should be naturally aligned with the data size. This means

that words (loaded with LW) should be aligned to 32 bits

and half words (loaded with LHW or LHU) should be

aligned to 16 bits. Even though this is suggested for best

performance, it is ultimately up to the chip designer to

support misaligned access. The RISC-V ISA does not

impose a restriction on the microarchitecture, so chip

designers are free to choose to support it or not.

Nevertheless, the ISA defines a trap mechanism to

emulate the access in software. This means that it is

ultimately possible to support these types of misaligned

access but with a time penalty.

B. Compilers

A typical compiler like GCC is normally aware of the

microarchitecture implementation allowing the

programmer to remain ignorant about it. In the case of

RISC-V, there is a set of registers accessible using the

CSR* instructions which describe the microarchitecture.

The misa register will describe which of the extensions the

CPU supports. Therefore, it is possible for a compiler to

prepare code for several microarchitectures and select the

correct one during runtime. Unfortunately, this will create

bloated binaries [9] which are not memory efficient on

memory constrained devices like microcontrollers. A

clear example of this is the M extension. This extension

provides hardware implementation for multiply and

divide instructions which should be faster than a software

implementation. Hence the compiler can prepare the code

to detect if the M extension is supported during runtime

and implement a software emulation alternative in case it

does not. To facilitate this process the RISC-V

architecture provides traps for invalid instructions. This

would allow the compiler to provide a trap handler that

would handle the missing instructions on the basic RV32I

set. There is of course a penalty for this but other than the

trap handler the original code remains the same.

The same technique can be used to handle other faults

related to the microarchitecture. In this paper a proposed

software emulation for a misaligned load is provided.

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 5

C. Data Structures

It is normal for programmers to group related information

using data structures. The C programming language struct

is a good example of this. Looking at Figure 1, the data

structure is composed of an 8 bit unsigned integer named

A, a 32 bit unsigned integer named B, a 16 bit signed

integer named C, an 8 bit signed integer named D and

finally an 8 bit unsigned integer named E.

If the programmer instantiates an element with this data

structure the compiler will be aware that the access to

certain elements will be misaligned in 32 bits systems

[10]. If the structure is stored on a byte addressing

computer in a way that naturally aligns the first element

(A), it will produce a misaligned access to the B and C

elements.

A programmer that is aware of the microarchitecture

limitations has the option to arrange the data in a way to

force natural alignment for the elements that are bigger

than 8 bits. So, Figure 2 would be a possible re-ordering

of the original structure in a way that all access to the

structure elements are naturally aligned.

Unfortunately requiring this change would be

cumbersome to the programmer since it needs to manually

align the elements of the data structure, but it's still not

good enough. The re-arrangement will work for a single

instance of the structure assuming the instance is stored in

a naturally aligned address but since the number of bytes

composing the structure is odd, it will not allow saving

two consecutive instances like an array. The second

instance will be misaligned.

For this reason, compilers will not require programmers to

naturally align elements inside a structure and will provide

a solution to the alignment access by adding padding to

the structure. On Figure 1, the compiler will reserve three

consecutive bytes after element A effectively expanding

A to be 32 bits. That way the structure is now naturally

aligned for all elements access but now it uses 12 bytes

instead of the original 9 bytes. This is a +33% increase

penalty to keep alignment. Furthermore, if the structure

would be composed only by element A and B, the added

padding would increase the original structure to a +60%.

Compilers provide ways to restrict padding by forcing the

data to be packed, which does not add any padding, but it

does not enforce alignment. It is up to the programmer to

choose whether to save memory space or improve speed

by avoiding misaligned access which might incur in time

penalties.

III. RELATED WORK

The Linux kernel recently added support for software

emulated misaligned accesses [11], but this

implementation requires running the Linux kernel which

is not always an option specially on systems that have no

Fig. 1 Misaligned Data Structure

struct Data {

 uint8_t A;
 uint32_t B;
 int16_t C;
 int8_t D;
 uint8_t E;

};

Fig. 2 Aligned Data Structure

struct Data {
 uint32_t B;
 int16_t C;
 uint8_t A;
 int8_t D;

 uint8_t E;
};

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 6

MMU and have fixed limited memory. Microcontrollers

like the ones studied on this paper usually implement

software in bare-metal or using a RTOS. The provided

code in this paper can be easily adapted to these chips

without imposing a full Linux kernel implementation.

The authors in [12] study the effects of misaligned

memory access in microcontrollers but it is not restricted

to RISC-V. Their study also includes ARM and MIPS

architectures. Their study is restricted in some cases to

byte access since not all platforms allow misaligned

access for words. This paper focuses on word load penalty

when address is misaligned and provides software

emulation when hardware does not support this type of

access.

Misaligned accesses become important based on [3] Heap

randomization can be improved in architectures that

support misaligned accesses.

IV. EVALUATION

Three different RISC-V microarchitectures were studied

in terms of their respective misaligned loads. All three

processors are oriented to microcontroller applications,

therefore memory is usually fixed size and as a scarce

resource it is important to maximize its usage. Hence

using padding in data structures is not recommended.

Table 1 represents the instruction set extensions, memory

size and microarchitecture details of the three processors.

A. FE310-G002

This RISC-V microcontroller [13] only supports software

emulated misaligned loads of words. The code present in

Figure 3 shows how to force a misaligned load using

pointers.

The C compiler translates the misaligned load of pWord

pointer into loadVariable with the ASM listed on Figure

4.

The middle ASM instruction in the group is the actual

misaligned load. Since it's a full 32 bit word load with

offset 0 based on the address pointed by a5 into a5, this

instruction can be compressed into 16 bits.

In order to test time penalties, a trap handler was written

to software-emulate the misaligned access. The code for

Table 1 RISC-V Microcontrollers

CPU FE310-G002 ESP32C3 RISC-Vp

Execution In-order pipelined In-order pipelined In-order no pipelined

Extensions RV32IMAC RV32IMC RV32I

Memory

16KB data.
16KB instruction.

Instruction memory

expandable using external

Flash.

400 KB shared for data

and instructions.

Instruction memory

expandable using external

Flash.

Up to 540KB using FPGA

BlockRAM shared data

and instruction.
No expansion.

Misalignment Software emulation Hardware support Hardware support

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 7

the handler is provided in [14]. This handler only supports

LW instructions, although it can be easily extended to

handle LH and LHU misaligned access as well. The

handler supports both RV32I and RV32IC extensions,

detecting at runtime if the offending instruction is LW or

C.LW (compressed LW).

The handler reads the mcause register to check if it is a

load alignment issue. If that is the case, then it recovers

the address of the offending instruction from the mepc

register. Since the instruction can be either LW or C.LW,

it can be aligned to 32 or 16 bits, so the handler supports

the possible misaligned instruction access. Upon reading

the instruction it calculates the return address for the trap

(done later with mret) and the destination register for the

load. In order to emulate the access, several registers are

temporarily used, and their previous content is saved on

the stack. Upon return the original content of those will be

recovered, except for the destination register of the

misaligned access which should have the misaligned data.

This is true for all cases except when the destination

register is the stack pointer itself. In this case, there needs

to be an extra scratch register or fixed memory location

used to store the misaligned value prior to calling mret. In

the case of this handler, it will scratch the T5 register, but

this can be modified to use a fixed memory location and

avoid using T5.

The software emulation executed 92 extra instructions for

the access listed on Figure 4. This number of extra

instructions will depend on how the original offending

instruction is coded, what type of misalignment it

performs and most important what is the destination

register, being the higher ones from x0 to x31 the worst

ones.

B. ESP32C3

This RISC-V microcontroller [15] supports hardware

misaligned loads. There is no need to provide a trap

handler since the hardware supports the misaligned

access. Since ESP32C3 has a pipelined microarchitecture

with data and instruction caches, using the cycle

performance counter (CSR 0x7e2 for this chip) might

yield different values depending on the pipeline stage and

cache state. Therefore, a loop doing 100 aligned access

followed by another loop with 100 misaligned access were

executed while saving the cycle performance counter. The

results yielded 807 cycles for aligned access and 1906

cycles for the misaligned ones. These numbers include the

loop instructions and performance counter access

overhead but since it is the same overhead on both loops

the comparison is still valid. The misaligned access incurs

a 137% penalty.

Fig. 3 Misaligned pointer access

struct Data {

 uint32_t A;
 uint32_t B;
};
struct Data data;
data.A=0x12345678;

data.B=0x90ABCDEF;
uint8_t *pByte = (uint8_t*)&data;
uint32_t *pWord = (uint32_t*)(pByte+4);
uint32_t loadVariable = *pWord; //Aligned
pWord = (uint32_t*)(pByte+1);

loadVariable = *pWord; //Misaligned

Fig. 4 ASM translation

lw a5, -24(s0)
lw a5, 0(a5)
sw a5, -28(s0)

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 8

C. RISC-Vp

This RISC-V implementation [16] also supports hardware

misaligned loads. Since this microarchitecture was

designed as an academic example of a RISC-V

implementation it is possible to predict the penalties in

misaligned access.

A proper aligned load uses 4 clock cycles while a

misaligned load consumes 7 clock cycles. This is a 75%

penalty when compared with an aligned load. This

microarchitecture executes on a fixed clock per instruction

since it has no pipeline and no cache, therefore there is no

need to execute loops or use performance counters.

V. CONCLUSIONS

Table 2 shows that software emulation can result in a big

time penalty versus the hardware implementation. The

penalty for FE310-G002 is estimated since the trap

handler efficiency varies depending on the offending load.

Both LW and C.LW were tested. The CPI (clocks per

instruction) represents the non-pipelined architecture of

RISC-Vp with a fixed 4 clock per instruction. The CPI

listed for FE310-G002 and ESP32C3 is also estimated

since it would depend on the pipeline state depending on

the code being executed but the goal for the pipeline

would be one clock per instruction.

Even though RISC-Vp has a lower time penalty than

ESP32C3 which also supports hardware misaligned loads,

ultimately the number of clocks per 100 misaligned loads

(C100LW) ends up being less for ESP32C3 due to the

pipeline implementation.

The result clearly indicates that software emulation of

misaligned load can incur severe time penalties affecting

performance. Systems that require misaligned access

should try to select a microarchitecture that can perform

these without software emulation.

The provided sample code [14] can be expanded to

support misaligned stores. This code is a good example of

software emulation for missing microarchitecture features

proving that RISC-V was designed in a way that simpler

microarchitectures can execute code for more complete

implementations. In this test scenario the FE310-G002

was limited in terms of misaligned access but this

limitation can be overcome via software emulation at a

high time penalty.

VI. REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer

Architecture: A Quantitative Approach Fifth Edition.

2007.

[2] D. M. Harris and S. L. Harris, Digital design and

computer architecture, 2nd edition. 2012. doi:

10.1016/C2011-0-04377-6.

[3] D. Jang, J. Kim, M. Park, Y. Jung, H. Lee, and

B. B. Kang, “Rethinking Misalignment to Raise the Bar

for Heap Pointer Corruption.” arXiv, 2018. doi:

10.48550/ARXIV.1807.01023.

[4] K. Asanović and D. Patterson, “RISC-V: An

Open Standard for SoCs | EE Times,” EE Times, 2014.

Table 2 Results

CPU FE310-G002 ESP32C3 RISC-Vp

Penalty 9200% 137% 75%

CPI 1 1 4

C100LW 9300 237 700

ISSN: 2525-1333. Vol.: 7 - Nro. 1 (AGOSTO-2022)

 http://reddi.unlam.edu.ar Pág: 9

[5] Agam Shah, “RISC-V takes steps to minimize

fragmentation”

https://www.theregister.com/2022/04/01/riscv_fragmenta

tion/, Apr. 01, 2022.

[6] R. M. Stallman and T. G. D. Community, “Using

the GNU Compiler Collection,” Development, vol. 2.

2012.

[7] A. Waterman et al., “The RISC-V instruction set

manual,” Volume I: User-Level ISA’, version, vol. 2,

2014.

[8] C. Celio, P. Dabbelt, D. A. Patterson, and K.

Asanović, “The Renewed Case for the Reduced

Instruction Set Computer: Avoiding ISA Bloat with

Macro-Op Fusion for RISC-V.” arXiv, 2016. doi:

10.48550/ARXIV.1607.02318.

[9] A. Singh, Mac OS X Internals: A Systems

Approach (paperback). Addison-Wesley Professional,

2006.

[10] Daniel Lemire, “Data alignment for speed: myth

or reality?,” https://lemire.me/blog/2012/05/31/data-

alignment-for-speed-myth-or-reality/, May 31, 2012.

[11] Damien Le Moal, “[v2,1/9] riscv: Unaligned

load/store handling for M_MODE”

https://patchwork.kernel.org/project/linux-

riscv/patch/20200312051107.1454880-2-

damien.lemoal@wdc.com/, Mar. 12, 2020.

[12] M. Hubacz and B. Trybus, “Data Alignment on

Embedded CPUs for Programmable Control Devices,”

Electronics (Basel), vol. 11, no. 14, 2022, doi:

10.3390/electronics11142174.

[13] SiFive Inc, “SiFive FE310-G002 Manual v1p4,”

2019.

[14] Edgardo Gho, “RISC-V Traps,”

https://github.com/edgardogho/RISC-V-Traps, Jul. 18,

2022.

[15] Espressif Systems, “ESP32-C3 Series

Datasheet,” 2022.

[16] Edgardo Gho, “RiscVP,”

https://github.com/edgardogho/RiscVP, Mar. 04, 2021.

Recibido: 2022-07-20

Aprobado: 2022-08-02

Hipervínculo Permanente: https://doi.org/10.54789/reddi.7.1.2

Datos de edición: Vol. 7 - Nro. 1 - Art. 2

Fecha de edición: 2022-08-10

