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Resumen: 

La arquitectura RISC-V fue concebida con el fin de evitar los problemas de sobrecarga de instrucciones de 

las arquitecturas x86 y ARM. Su definición es abierta dejando librado los detalles de la microarquitectura al 

diseñador del procesador. Las implementaciones de microcontroladores RISC-V se comportan de manera 

distinta en cuanto a los accesos a datos de forma no alineada. Si bien los compiladores buscan evitar este tipo 

de accesos, determinadas estructuras de datos requieren los mismos en ámbitos donde la memoria es limitada. 

En este artículo se estudia la implementación de tres microarquitecturas RISC-V en cuanto a los accesos a 
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memoria no alineados y se plantea un código que permite salvar la ejecución de programas que realizan 

accesos no alineados cuando la microarquitectura no tiene soporte para los mismos. En los casos donde la 

microarquitectura soporta accesos no alineados se estudia el impacto en la eficiencia de ejecución de 

instrucciones. 

 

 

Abstract: 

The RISC-V instruction set architecture is designed to overcome current problems of bloated instruction sets 

present in other architectures like x86 and ARM. The ISA does not restrict micro architecture 

implementations leaving those details free to the chip designer.  RISC-V microcontrollers can then provide 

support for misaligned memory loads or depend on software emulation. Compilers will try to prevent these 

types of memory accesses nevertheless some data structures require them mostly on memory constraint 

systems. This article studies three different RISC-V microarchitecture implementations related to misaligned 

accesses and provides code to perform software emulation when the microarchitecture does not support them. 

Instruction execution penalties are studied comparing them to aligned memory accesses.   
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I. INTRODUCTION 

A computer is composed of three main components, being 

the Central Processing Unit (CPU), Memory Unit and 

Input/Output(I/O). Memory content is defined by the user 

depending on the application. Programs designed to be 

executed by the CPU need to be stored in memory for the 

CPU to access and execute. This is done by storing the 

program instructions on a memory section, which the CPU 

accesses sequentially during the execution of the program. 

Program data, usually referred to as variables, are also 

stored in memory and accessed by the CPU in the same 

manner. Computer architecture defines a data unit named 

word which represents the size of a single unit of 

information. The unit size is usually tailored to the 

application. Most modern computer architectures [1] have 

word sizes larger than one byte, being 4 bytes (32 bits) and 

8 bytes (64 bits) the more common. Some computer 

architectures, in particular Harvard-based ones, define 

different memory ranges to differentiate between program 

instructions and program data. These ranges need to be 

known in order to properly use the computer. This 

information is usually represented on a memory map 

which lists the ranges where a program instructions and 

data can be stored. The memory addressing is part of the 

computer architecture and virtually all computer 

architectures [2] use byte addressing. In essence, byte 

addressing allows the user to reference a single byte inside 

a word. Nevertheless, memories are organized as block 

arrays and are meant to be accessed one block at a time. 

The block size is related to cache memory line size [3], in 

particular L1. So even though CPUs support byte 

addressing, the program information (being instruction or 

data) is usually word aligned, so much so that some CPU 

architectures enforce a restriction preventing memory 

accesses that cross the word boundary. These types of 

accesses are usually referred to as unaligned or misaligned 

accesses.   

In [3] the authors study the impact of different unaligned 

memory accesses on different x64 ISA (instruction set 

architecture) instructions. Depending on the boundary 

crossed the time penalty can be up to 1800%.  

The RISC-V is an open standard instruction set 

architecture that is not bound to a particular 

implementation [4]. This means that while the computer 

architecture is standardized and clearly defined, 

manufacturers have no restrictions on how to implement 

the ISA. While this gives an enormous amount of freedom 

to the designer it can create fragmentation among different 

implementations of the same ISA [5]. Being an open 

architecture RISC-V allows microarchitecture changes to 

improve security while maintaining the base instruction 

set compatibility.  

This paper studies the microarchitecture differences 

within memory access alignment in three different RISC-

V CPUs. Although the three CPUs implement the same 

basic RV32I instruction set as a minimum, some 

implement a more complete RV32IMAC set including 

integer multiplication/division, atomic access and 

compressed instructions. The focus of the paper is 

comparing how the three handle misaligned load access to 

data memory. As a result, we propose a simple code to 

handle misaligned loads for word size data, both in RV32I 

and RV32IMAC sets. A benchmark is performed to 

measure the execution time penalty. 

It is important to highlight that most compilers will try to 

prevent misaligned access to memory. One known case is 
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the GCC [6] compiler which adds padding to data 

structures in order to keep load access to the data structure 

element aligned. Even though this will prevent misaligned 

access, the padding added to the data structure consumes 

memory. On CPU implementations designed for 

embedded systems and not general purpose computers 

memory is usually constrained and using padding in data 

structures will waste this resource. 

 

II. BACKGROUND  

A. RISC-V 

The base RISC-V ISA [7] is a fixed 32 bit instruction 

length. However, it is designed to be extended to a 

variable length set using 16 bits parcels. Therefore, 

instruction alignment needs to be naturally aligned to the 

16 bit parcel size. If the implementation is restricted to the 

basic RV32I set, then a 32 bit natural alignment is needed 

for instructions, although it is very common to find 

RV32IC which supports compressed instructions 

changing the requirement to a 16 bit natural alignment. In 

fact, the macro-op fusion benefits [8] from using the 

compressed instructions to achieve better performance 

than other ISAs like x86 or ARM. 

Data access on the other hand is byte addressed and there 

are no restrictions by the ISA in terms of alignment. The 

authors describe that for best performance data access 

should be naturally aligned with the data size. This means 

that words (loaded with LW) should be aligned to 32 bits 

and half words (loaded with LHW or LHU) should be 

aligned to 16 bits. Even though this is suggested for best 

performance, it is ultimately up to the chip designer to 

support misaligned access. The RISC-V ISA does not 

impose a restriction on the microarchitecture, so chip 

designers are free to choose to support it or not. 

Nevertheless, the ISA defines a trap mechanism to 

emulate the access in software. This means that it is 

ultimately possible to support these types of misaligned 

access but with a time penalty. 

 

B. Compilers 

A typical compiler like GCC is normally aware of the 

microarchitecture implementation allowing the 

programmer to remain ignorant about it. In the case of 

RISC-V, there is a set of registers accessible using the 

CSR* instructions which describe the microarchitecture. 

The misa register will describe which of the extensions the 

CPU supports. Therefore, it is possible for a compiler to 

prepare code for several microarchitectures and select the 

correct one during runtime. Unfortunately, this will create 

bloated binaries [9] which are not memory efficient on 

memory constrained devices like microcontrollers. A 

clear example of this is the M extension. This extension 

provides hardware implementation for multiply and 

divide instructions which should be faster than a software 

implementation. Hence the compiler can prepare the code 

to detect if the M extension is supported during runtime 

and implement a software emulation alternative in case it 

does not. To facilitate this process the RISC-V 

architecture provides traps for invalid instructions. This 

would allow the compiler to provide a trap handler that 

would handle the missing instructions on the basic RV32I 

set. There is of course a penalty for this but other than the 

trap handler the original code remains the same.  

The same technique can be used to handle other faults 

related to the microarchitecture. In this paper a proposed 

software emulation for a misaligned load is provided. 
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C. Data Structures 

It is normal for programmers to group related information 

using data structures. The C programming language struct 

is a good example of this. Looking at Figure 1, the data 

structure is composed of an 8 bit unsigned integer named 

A, a 32 bit unsigned integer named B, a 16 bit signed 

integer named C, an 8 bit signed integer named D and 

finally an 8 bit unsigned integer named E. 

If the programmer instantiates an element with this data 

structure the compiler will be aware that the access to 

certain elements will be misaligned in 32 bits systems 

[10]. If the structure is stored on a byte addressing 

computer in a way that naturally aligns the first element 

(A), it will produce a misaligned access to the B and C 

elements.  

A programmer that is aware of the microarchitecture 

limitations has the option to arrange the data in a way to 

force natural alignment for the elements that are bigger 

than 8 bits. So, Figure 2 would be a possible re-ordering 

of the original structure in a way that all access to the 

structure elements are naturally aligned. 

Unfortunately requiring this change would be 

cumbersome to the programmer since it needs to manually 

align the elements of the data structure, but it's still not 

good enough. The re-arrangement will work for a single 

instance of the structure assuming the instance is stored in 

a naturally aligned address but since the number of bytes 

composing the structure is odd, it will not allow saving 

two consecutive instances like an array. The second 

instance will be misaligned. 

For this reason, compilers will not require programmers to 

naturally align elements inside a structure and will provide 

a solution to the alignment access by adding padding to 

the structure. On Figure 1, the compiler will reserve three 

consecutive bytes after element A effectively expanding 

A to be 32 bits. That way the structure is now naturally 

aligned for all elements access but now it uses 12 bytes 

instead of the original 9 bytes. This is a +33% increase 

penalty to keep alignment. Furthermore, if the structure 

would be composed only by element A and B, the added 

padding would increase the original structure to a +60%. 

Compilers provide ways to restrict padding by forcing the 

data to be packed, which does not add any padding, but it 

does not enforce alignment.  It is up to the programmer to 

choose whether to save memory space or improve speed 

by avoiding misaligned access which might incur in time 

penalties. 

 

III. RELATED WORK  

The Linux kernel recently added support for software 

emulated misaligned accesses [11], but this 

implementation requires running the Linux kernel which 

is not always an option specially on systems that have no 

Fig. 1  Misaligned Data Structure 

struct Data { 

    uint8_t   A; 
    uint32_t B; 
    int16_t   C; 
    int8_t     D; 
    uint8_t   E; 

}; 

Fig. 2  Aligned Data Structure 

struct Data { 
    uint32_t B; 
    int16_t   C; 
    uint8_t   A; 
    int8_t     D; 

    uint8_t   E; 
}; 
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MMU and have fixed limited memory. Microcontrollers 

like the ones studied on this paper usually implement 

software in bare-metal or using a RTOS. The provided 

code in this paper can be easily adapted to these chips 

without imposing a full Linux kernel implementation.  

The authors in [12] study the effects of misaligned 

memory access in microcontrollers but it is not restricted 

to RISC-V. Their study also includes ARM and MIPS 

architectures. Their study is restricted in some cases to 

byte access since not all platforms allow misaligned 

access for words. This paper focuses on word load penalty 

when address is misaligned and provides software 

emulation when hardware does not support this type of 

access. 

Misaligned accesses become important based on [3] Heap 

randomization can be improved in architectures that 

support misaligned accesses. 

 

IV. EVALUATION  

Three different RISC-V microarchitectures were studied 

in terms of their respective misaligned loads. All three 

processors are oriented to microcontroller applications, 

therefore memory is usually fixed size and as a scarce 

resource it is important to maximize its usage. Hence 

using padding in data structures is not recommended. 

Table 1 represents the instruction set extensions, memory 

size and microarchitecture details of the three processors. 

 

A. FE310-G002 

This RISC-V microcontroller [13] only supports software 

emulated misaligned loads of words. The code present in 

Figure 3 shows how to force a misaligned load using 

pointers. 

The C compiler translates the misaligned load of pWord 

pointer into loadVariable with the ASM listed on Figure 

4. 

The middle ASM instruction in the group is the actual 

misaligned load. Since it's a full 32 bit word load with 

offset 0 based on the address pointed by a5 into a5, this 

instruction can be compressed into 16 bits.  

In order to test time penalties, a trap handler was written 

to software-emulate the misaligned access. The code for 

Table  1  RISC-V Microcontrollers 

CPU FE310-G002 ESP32C3 RISC-Vp 

Execution In-order pipelined In-order pipelined In-order no pipelined 

Extensions RV32IMAC RV32IMC RV32I 

 
Memory 

   
 

 

16KB data. 
16KB instruction. 

Instruction memory 

expandable using external 

Flash. 

400 KB shared for data 

and instructions. 

Instruction memory 

expandable using external 

Flash. 

Up to 540KB using FPGA 

BlockRAM shared data 

and instruction. 
No expansion. 

Misalignment Software emulation Hardware support Hardware support 
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the handler is provided in [14]. This handler only supports 

LW instructions, although it can be easily extended to 

handle LH and LHU misaligned access as well. The 

handler supports both RV32I and RV32IC extensions, 

detecting at runtime if the offending instruction is LW or 

C.LW (compressed LW).  

The handler reads the mcause register to check if it is a 

load alignment issue. If that is the case, then it recovers 

the address of the offending instruction from the mepc 

register. Since the instruction can be either LW or C.LW, 

it can be aligned to 32 or 16 bits, so the handler supports 

the possible misaligned instruction access. Upon reading 

the instruction it calculates the return address for the trap 

(done later with mret) and the destination register for the 

load. In order to emulate the access, several registers are 

temporarily used, and their previous content is saved on 

the stack. Upon return the original content of those will be 

recovered, except for the destination register of the 

misaligned access which should have the misaligned data. 

This is true for all cases except when the destination 

register is the stack pointer itself. In this case, there needs 

to be an extra scratch register or fixed memory location 

used to store the misaligned value prior to calling mret. In 

the case of this handler, it will scratch the T5 register, but 

this can be modified to use a fixed memory location and 

avoid using T5.  

The software emulation executed 92 extra instructions for 

the access listed on Figure 4. This number of extra 

instructions will depend on how the original offending 

instruction is coded, what type of misalignment it 

performs and most important what is the destination 

register, being the higher ones from x0 to x31 the worst 

ones.  

 

B. ESP32C3 

This RISC-V microcontroller [15] supports hardware 

misaligned loads. There is no need to provide a trap 

handler since the hardware supports the misaligned 

access. Since ESP32C3 has a pipelined microarchitecture 

with data and instruction caches, using the cycle 

performance counter (CSR 0x7e2 for this chip) might 

yield different values depending on the pipeline stage and 

cache state. Therefore, a loop doing 100 aligned access 

followed by another loop with 100 misaligned access were 

executed while saving the cycle performance counter. The 

results yielded 807 cycles for aligned access and 1906 

cycles for the misaligned ones. These numbers include the 

loop instructions and performance counter access 

overhead but since it is the same overhead on both loops 

the comparison is still valid. The misaligned access incurs 

a 137% penalty.  

 

Fig. 3  Misaligned pointer access 

struct Data { 

    uint32_t A; 
    uint32_t B; 
}; 
struct Data data; 
data.A=0x12345678; 

data.B=0x90ABCDEF; 
uint8_t *pByte = (uint8_t*)&data; 
uint32_t *pWord = (uint32_t*)(pByte+4); 
uint32_t loadVariable = *pWord; //Aligned 
pWord = (uint32_t*)(pByte+1); 

loadVariable = *pWord; //Misaligned 

Fig. 4  ASM translation 

lw    a5, -24(s0) 
lw    a5,    0(a5) 
sw   a5, -28(s0) 
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C. RISC-Vp 

This RISC-V implementation [16] also supports hardware 

misaligned loads. Since this microarchitecture was 

designed as an academic example of a RISC-V 

implementation it is possible to predict the penalties in 

misaligned access. 

A proper aligned load uses 4 clock cycles while a 

misaligned load consumes 7 clock cycles. This is a 75% 

penalty when compared with an aligned load. This 

microarchitecture executes on a fixed clock per instruction 

since it has no pipeline and no cache, therefore there is no 

need to execute loops or use performance counters. 

 

V. CONCLUSIONS 

Table 2 shows that software emulation can result in a big 

time penalty versus the hardware implementation. The 

penalty for FE310-G002 is estimated since the trap 

handler efficiency varies depending on the offending load. 

Both LW and C.LW were tested. The CPI (clocks per 

instruction) represents the non-pipelined architecture of 

RISC-Vp with a fixed 4 clock per instruction. The CPI 

listed for FE310-G002 and ESP32C3 is also estimated 

since it would depend on the pipeline state depending on 

the code being executed but the goal for the pipeline 

would be one clock per instruction. 

Even though RISC-Vp has a lower time penalty than 

ESP32C3 which also supports hardware misaligned loads, 

ultimately the number of clocks per 100 misaligned loads 

(C100LW) ends up being less for ESP32C3 due to the 

pipeline implementation.  

The result clearly indicates that software emulation of 

misaligned load can incur severe time penalties affecting 

performance. Systems that require misaligned access 

should try to select a microarchitecture that can perform 

these without software emulation. 

The provided sample code [14] can be expanded to 

support misaligned stores. This code is a good example of 

software emulation for missing microarchitecture features 

proving that RISC-V was designed in a way that simpler 

microarchitectures can execute code for more complete 

implementations. In this test scenario the FE310-G002 

was limited in terms of misaligned access but this 

limitation can be overcome via software emulation at a 

high time penalty.  
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